On edge detour graphs
نویسندگان
چکیده
For two vertices u and v in a graph G = (V, E), the detour distance D(u, v) is the length of a longest u–v path in G. A u–v path of length D(u, v) is called a u–v detour. A set S ⊆ V is called an edge detour set if every edge in G lies on a detour joining a pair of vertices of S. The edge detour number dn1(G) of G is the minimum order of its edge detour sets and any edge detour set of order dn1(G) is an edge detour basis of G. A connected graph G is called an edge detour graph if it has an edge detour set. It is proved that for any non-trivial tree T of order p and detour diameter D, dn1(T ) ≤ p−D +1 and dn1(T ) = p−D +1 if and only if T is a caterpillar. We show that for each triple D, k, p of integers with 3 ≤ k ≤ p − D + 1 and D ≥ 4, there is an edge detour graph G of order p with detour diameter D and dn1(G) = k. We also show that for any three positive integers R, D, k with k ≥ 3 and R < D ≤ 2R, there is an edge detour graph G with detour radius R, detour diameter D and dn1(G) = k. Edge detour graphs G with detour diameter D ≤ 4 are characterized when dn1(G) = p − 2 or dn1(G) = p − 1.
منابع مشابه
The explicit relation among the edge versions of detour index
The vertex version of detour index was defined during the works on connected graph in chemistry. The edge versions of detour index have been introduced ecently. In this paper, the explicit relations among edge versions of detour index have been declared and due to these relations, we compute the edge detour indices for some well-known graphs.
متن کاملDetour Monophonic Graphoidal Covering Number of Corona Product Graph of Some Standard Graphs with the Wheel
A chord of a path $P$ is an edge joining two non-adjacent vertices of $P$. A path $P$ is called a monophonic path if it is a chordless path. A longest $x-y$ monophonic path is called an $x-y$ detour monophonic path. A detour monophonic graphoidal cover of a graph $G$ is a collection $psi_{dm}$ of detour monophonic paths in $G$ such that every vertex of $G$ is an internal vertex of at most on...
متن کاملUpper Edge Detour Monophonic Number of a Graph
For a connected graph G of order at least two, a path P is called a monophonic path if it is a chordless path. A longest x−y monophonic path is called an x − y detour monophonic path. A set S of vertices of G is an edge detour monophonic set of G if every edge of G lies on a detour monophonic path joining some pair of vertices in S. The edge detour monophonic number of G is the minimum cardinal...
متن کاملOn edge detour index polynomials
The edge detour index polynomials were recently introduced for computing the edge detour indices. In this paper we find relations among edge detour polynomials for the 2-dimensional graph of $TUC_4C_8(S)$ in a Euclidean plane and $TUC4C8(S)$ nanotorus.
متن کاملOn Detour Index
The detour index of a connected graph is defined as the sum of the detour distances (lengths of longest paths) between unordered pairs of vertices of the graph. We give bounds for the detour index, determine the graphs with minimum and maximum detour indices respectively in the class of n-vertex unicyclic graphs with cycle length r, where 3 ≤ r ≤ n−2, and the graphs with the first, the second a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Discussiones Mathematicae Graph Theory
دوره 30 شماره
صفحات -
تاریخ انتشار 2010